Rutgers University: Algebra Written Qualifying Exam

January 2008: Day 2 Problem 7 Solution

Exercise. Let D be a principal ideal domain and let E be a commutative domain containing D as a subring (a commutative domain is also called an integral domain). Let $a, b \in D$ and suppose that $d \in D$ is a greatest common divisor of a and b in D. Prove that d is also a greatest common divisor of a and b in E.

Solution.

D is a principal ideal domain, so if I is an ideal
[i.e. $(I,+)$ a subgroup of $(D,+)$ and $i r \in I$ for all $i \in I]$
and $r \in D]$ then $I=\langle g\rangle$ for some $g \in D$.
E is a commutative domain, so it is a commutative ring with no zero divisors.
Let d be a gcd of a and b in D. If $c \in D$ such that $c \mid a$ and $c \mid b$, then $c \mid d$
$\langle a, b\rangle$ is an ideal of D and $\operatorname{gcd}(a, b)=d$ in D
Since D is a PID,

	$\langle a, b\rangle=\langle p\rangle$		for some $p \in D$
\Longrightarrow	$a \in\langle p\rangle$	and	$b \in\langle p\rangle$
\Longrightarrow	$p \mid a$	and	$p \mid b$
\longrightarrow	$p \mid d$		since d is the gcd of a and b in D
	$\langle a, b\rangle=\langle p\rangle$		
\longrightarrow	$p \in\langle a, b\rangle$		
\Longrightarrow	$p=r a+s b$		for somer, $s \in D$
\Longrightarrow	$d \mid p$		since $d \mid a$ and $d \mid b$
Thus,	$d=p$		since $d \mid p$ and $p \mid d$

Thus, if D is a PID and the gcd of a and b in D is d, then $\langle a, b\rangle=\langle d\rangle$.

$$
\begin{array}{rlrl}
\operatorname{gcd}(a, b)=d & \Longleftrightarrow \quad\langle a, b\rangle=\langle d\rangle \\
& \Longleftrightarrow x, y, u, v \in D \text { s.t. } & \\
a & =d x \\
b & =d y, \text { and } \\
a u+b v & =d
\end{array}
$$

Let $c \in E$ s.t. $c \mid a$ and $c \mid b$
Then $c \mid \underbrace{(a u+b v)}_{=d}$ since $u, v \in D \subseteq E$.
So the gcd of a and b in E is d.

